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ABSTRACT

A GENERAL PURPOSE
ROTATION, SCALING, AND TRANSLATION INVARIANT 

PATTERN CLASSIFICATION SYSTEM

Cem Yiiceer
M.S. in Computer Engineering and Information Science 

Supervisor: Assoc. Prof. Kemal Oflazer
1992

Artificial neural networks have recently been used for pattern classification pur­
poses. In this work, a general purpose pattern classification system which is 
rotation, scaling, and, translation invariant is introduced. The system has three 
main blocks; a Karhunen-Loeve transformation based preprocessor, an artificial 
neural network based classifier, and an interpreter. Through experimentation on 
the English alphabet, the Japanese Katakana alphabet, and some geometric sym­
bols the power of the system in maintaining invariancies and performing pattern 
classification has been shown.

Keywords: Rotational invariancy, scaling invariancy, translational invariancy, 
general purpose pattern classification, artificial neural networks, Karhunen-Loeve.



ÖZET

GENEL AMAÇLI DÖNME, ÖLÇEKLENME VE ÖTELENME 
DEĞİŞİMSİZ ÖRÜNTÜ SINIFLANDIRMA SİSTEMİ

> Cem. Yüceer
Bilgisayar Mühendisliği ve Enformatik Bilimleri Bölümü

Yüksek Lisans
Tez Yöneticisi: Doçent Kemal Oflazer 

1992

Yapay sinir ağlan son çalışmalarda örüntü sınıflandırma amaçları için kullanılmış­
tır. Bu çalışmada genel amaçlı dönme, çiçeklenme ve ötelenme değişimsiz örüntü 
sınıflandırma sistemi sunulmaktadır. Sistemin üç ana öbeği vardır; Karhunen- 
Loeve dönüşümü temelli önişlemci, yapay sinir ağı temelli sınıflandırıcı ve yo­
rumlayıcı. Ingiliz abecesi, Japon Katakana abecesi ve bazı geometrik simgeler 
üzerindeki deneysel çalışmalarla sistemin değişimsizliği sağlama ve örüntü sınıf­
landırma gücü gösterilmiştir.

Anahtar Kelimeler: Dönme değişimsizliği, ölçeklenme değişimsizliği, ötelenme 
değişimsizliği, genel amaçlı örüntü sınıflandırma, yapay sinir ağları, Karhunen- 

Loeve.
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Chapter 1

Introduction

The recent interest in artificial neural networks, machine learning, and parallel 
computation has led to renewed research in the area of pattern recognition. Pat­
tern recognition aims to extract information about the image and/or classify its 
contents. Systems having pattern recognition ability have many possible appli­
cations in a wide variety of areas, from simple object existence checks, through 
identity verification, to robot guidance in space exploration. Pattern classifica­
tion, a subfield of pattern recognition, is concerned with determining whether the 
pattern in an input image belongs to one of the predefined classes. Early pattern 
classification research performed in ’60s and ’70s focused on asymptotic prop­
erties of classifiers, on demonstrating convergence of density estimators, and on 
providing bounds for error rates. Many researchers studied parametric Bayesian 
classifiers where the form of input distributions is assumed to be known and 
parameters of distributions are estimated using techniques that require simulta­
neous access to all training data. These classifiers, especially those that assume 
Gaussian distributions, are still the most widely used since they are simple and 
are clearly described in a number of textbooks [5, 7]. However, the thrust of 
recent research has changed. More attention is being paid to practical issues 
as pattern classification techniques are being applied to speech, vision, robotics.
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and artificial intelligence applications where real-time response with complex real 
world data is necessary. In all cases, pattern classification systems should be able 
to learn while or before performing, and make decisions depending on the recog­
nition result.

CH APTER 1. INTRODUCTION 2

Developing pattern recognition systems is usually a two-stage process. First, 
the designer should carefully examine the characteristics of the pattern environ­
ment. This involves lengthy experimentation. The result is a set of features 
chosen to represent the original input image. Second, the designer should choose 
from a variety of techniques to classify the pattern which is now in featural repre­
sentation. The stage of feature determination and extraction strictly determines 
the success of the system, since from thereon the image is represented by this 
featural form. Therefore, it is highly desired that the classification system itself 
should extract the necessary features to differentiate the example patterns that 
represent each class. In other words, the system should be automated to work 
by itself and should not depend on the human designer’s success in defining the 
features. Further, these features should be chosen such that they should tolerate 
the differentiation between the patterns in the same class. The system should 
also have the ability to perform the classification in a rotation, scaling, and trans­
lation invariant manner. This effect is typical when the scanning device, suppose 
a camera, changes its orientation or distance from the specimen. Hence the im­
age fed to the system may contain a pattern that is rotated, scaled, or translated 
compared to its original form when it was first presented to the system. For 
such a case, either the system should employ features that are invariant to such 
transformations or there should be a preprocessor to maintain the rotational, 
scaling, and translational invariancy. Even for a limited system designed for clas­
sifying only a determined type of patterns -  an optical character classifier, or an 
identity verifier -  it is hard to find features that extract useful information while 
maintaining the mentioned invariancies. The problem will be impractical if such 
a system is intended for general purpose classification, or to say it is aimed to 

classify any type of patterns.



The scope of this work was to develop a general purpose pattern classification 
system which is rotation, scaling, and translation invariant. In order to differen­
tiate any type of patterns, a neural network based system has been developed to 
automaticly select the necessary features, provided that some number of exam­
ple patterns from each class are supplied. Artificial neural networks have been 
chosen for the feature extraction and class determination process for their widely 
applied learning behaviors [1, 3, 4, 8, 12, 16]. The rotational, scaling, and trans­
lational invariancies has been maintained by a newly developed Karhunen-Loeve 
transformation based preprocessor.
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The text is organized as follows: Chapter 2 has three subsections. The first 
is on the pattern classification problem. The second overviews the previous re­
search on classifying patterns using artificial neural networks. The last subsection 
supplies basic information on artificial neural networks. Chapter 3 describes the 
proposed pattern classification system. The three main blocks -  preprocessor, 
classifier, and interpreter -  are defined. The preprocessor is further divided into 
three subblocks, called T-Block, S-Block, and R-Block. The definitions are clari­
fied with mathematical formulations. Chapter 4 gives the experimental results on 
three different pattern classification problems, the English alphabet, the Japanese 
Katakana alphabet, and five main geometric symbols. The conclusions in Chap­
ter 5 are followed by two appendices including the mathematical derivations of 
the two group of formulae given in the text.



Chapter 2

Pattern Recognition and Neural 
Networks

Pattern recognition deals with the identification or interpretation of the pattern 
in an image. It aims to extract information about the image and/or classify 
its contents. A computer vision system must incorporate a pattern recognition 
capability. For some simple and frequently encountered patterns, the recognition 
process can be a straightforward task. However, when patterns are complex or 
when pattern characteristics can not be predicted beforehand then one needs a 
high-level system to perform pattern recognition. Problem attempted in this work 
is a subclass of the general pattern recognition problem. The aim is to classify 
the pattern in an input image according to the information that was extracted 
from the example patterns previously supplied to the system. Inputs are in the 
form of digitized binary-valued 2-D images containing the pattern to be classified. 
This representation of the 2-D image is defined and used throughout the text as 
the pixel-map form of the image.
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2.1 Overview of Pattern Classification

Pattern classification is concerned with determining whether the pattern in an 
input image belongs to one of the predefined classes. Two pattern classification 
techniques are major, template matching and feature extraction. In the simplest 
case, template matching refers to the comparison of the pixel-map of the test 
pattern with a number of stored pixel-maps until an exact match or a match 
with tolerable error is found. It is a top-down process in the sense that the trial 
procedure does not depend on the test pattern in any way. On the other hand, 
feature extraction is the process of converting the pixel-map representation of the 
input image to a group of quantitative descriptors called feature values. These 
features are usually predefined by the designer and chosen to be independent 
from each other [3, 4, 12].

Pattern classification using feature extraction usually starts by detection of 
some limited number of features. These features are chosen to distinguish most of 
the previously stored patterns. If a non-acceptable result is obtained, classification 
continues with some other features until a unique decision is made. It is important 
to note that the feature extraction process which converts the input image to a set 
of quantitative values should preserve the discrimination information throughout 
and after the conversion. That is, in order to attain a high success ratio in 
classification features should satisfy the following two requirements [12]:

• Small intraclass invariance : Patterns with similar shapes and similar 
general characteristics should end up with numerically close numbers for 
the features. •

• Large interclass separation : Patterns from different classes should eval­
uate to features which have quite different quantitative values. In other 
words, the patterns from different classes should differ in one or more fea­
tures so that discrimination can be made.



Template matching gets both computation and memory intensive when the 
resolution of the stored patterns increase, or when the patterns get more com­
plex. In addition, template matching is sensitive to the exact orientation, size, 
and location of the object unless rotation, scaling, and translation invariant auto­
correlation techniques are used. Consider the case of complex patterns which are 
2-D perspective projections of 3-D objects, the patterns will be highly effected 
by the orientation and position of the objects, hence some form of generalized 
template matching will be required. That is, the stored image should be an 
averaged version of a number of templates. Statistical decision theory helps in 
the mathematical construction of the generalized template and the recognition 
analysis.

The computation and memory requirements for classification with feature ex­
traction are less severe than template matching. In most applications, computers 
having moderate computing power are employed to generate the Fourier descrip­
tors of the perimeter lines in a silhouette of the pattern. For higher level tasks, 
artificial intelligence techniques would be used in analyzing the information em­
bedded in the skeletonized form of the patterns. The fundamental problem with 
feature extraction is that important information may be lost in the extensive data 
reduction at the feature extraction stage.

CH APTER 2. PATTERN RECOGNITION AND NEURAL NETW ORKS 6

2.2 Overview of Previous Works on Pattern 
Classification with Neural Networks

There are two main groups of previous works on pattern classification with ar­
tificial neural networks. The first group, defines a featural representation for 
the image. In other words, the input image is transformed to some predefined 
features before classification is performed -  a process called feature extraction.



Examples of such work are extraction of image information using regular mo­
ments [20], Zernike moments [12], Fourier descriptors [15, 19, 20, 23], autore­
gressive models [11], image representation by circular harmonic expansion [10], 
syntactic pattern recognition applications [6], Karhunen-Loeve expansion [13], 
polar-coordinate Fourier transform [2], transforming the image to another 2-D 
representation [14]. Kollias et.al., in their work have transformed the input im­
age to another 2-D representation, called (a,6) plane, and performed classifica­
tion using higher-order networks [14]. Khotanzad et.al., in their work have used 
Zernike moments to achieve rotational invariancy in classification [12]. They 
have computed some finite number of Zernike moments of the given image and 
performed classification on these moment values. Le Cun et.al., have first skele­
tonized the pattern and then scanned the whole image with a 7 x 7 window, 
where the window templates were designed to detect some predefined features 
[3]. The classification was performed on the computed values. Kirby et.al., have 
used the Karhunen-Loeve expansion of the input image as its featural representa­
tion and performed classification on the expansion [13]. Among these works, the 
common approach is converting the input image to some compact and transforma­
tion invariant form, and then classifying this representation using artificial neural 
networks. The transformation mentioned is functionally the process of feature 
extraction, since the original image is converted to a form in which classification 
information is easily detected. However note that, features for distinguishing 
letters are not same as the features for distinguishing complex patterns such as 
fingerprints or faces. Hence, a general pattern classifier which is capable of per­
forming successful classifications for large number of problems will be impractical 
unless the classification system is designed to extract the features itself.

CH APTER 2. PATTERN RECOGNITION AND NEURAL NETW ORKS 7

Second and newly developing group prefers the features to be determined and 
extracted by the artificial neural network itself. Martin et.al., in their work have 
fed the neural network by size-normalized gray scale images [17]. They report 
that ‘Hke generalization performance is surprisingly insensitive to characteristics 
of the network architecture, as long as enough training samples are used and there
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x [l]

Figure 2.1: Structure and function of a single artificial neuron.

is sufficient capacity to support training to high levels. ”

For the system introduced through this text, an artificial neural network has 
been employed to extract the essential features from the input set and to per­
form the classification. The system also includes a preprocessor block that maps 
the rotated, scaled, and translated input images to a canonical form which is 
then classified by the neural network. Finally, the outputs of the classifier are 
interpreted by the interpreter block.

2.3 Overview of Artificial Neural Networks

Artificial neural networks are computational models inspired from the structure 
of the brain. They are massively parallel networks comprising large number of 
simple processing units, called artificial neurons. Artificial neural networks con­
stitute an alternative knowledge representation paradigm for artificial intelligence 
and cognitive science. The neuron structure given in Figure 2.1 is the basic build­
ing block of such networks. It performs a weighted summation over its inputs, 
where these inputs may be the outputs of other neurons or may be external to the 
network. The threshold, a local value for each neuron, is added to the sum. Then
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y=F(S)
I

y=F(S)II
1

-1

Figure 2.2: Some activation functions for the artificial neuron.

an activation function -  also called as the limiting or squashing function -  is ap­
plied on the resulting sum to determine the neuron’s output value. Widely used 
activation function types are various sigmoids, and hard-limiting (thresholding) 
functions, some of which are shown in Figure 2.2.

The weights associated with the inter-neuron connections represent the influ­
ence of its inputs over its output -  or activation -  value. Depending on the sign 
of the weight an input may excite or inhibit the neuron. The learning behavior of 
artificial neural networks are accomplished by the learning algorithms continu­
ously updating these weights until the given inputs produce the desired outputs. 
There are two main types of learning algorithms:

• Supervised learning : The user should supply the desired outputs while 
feeding the input pattern,

• U nsupervised learning : The network itself gathers the necessary infor­
mation from the input patterns, hence develops its own representation.

There is a variety of interconnection topologies between artificial neurons. The 
most common one is the class of multilayer feed-forward networks, where neurons 
are grouped as layers and connections between neurons in subsequent layers are 
permitted. One end of the layered structure is named as the input layer, while the 
other end as output layer. The inputs are fed from the input layer and the outputs 
are expected from the output layer. Using artificial neural networks for pattern
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classification purposes has become very popular in recent years. Especially feed­
forward type nets are frequently applied to many recognition problems [1, 3, 4, 
8, 12, 16].



Chapter 3

The Pattern Classification
System

Feed-forward type neural networks, when used as a pattern classifier, are highly 
sensitive to transformations like rotation, scaling, and translation. This behavior 
emerges from the fact that throughout the training phase the area of interest 
concentrates mainly on the region where the pattern lies. Hence the weights 
associated with the input pixels that are out of this region finally decays to 
zero. Since the neurons in the first layer perform a weighted summation over the 
values of all pixels, these null weights block the information that may arise from 
the corresponding pixels. Note that, a transformation of any kind may push the 
pattern out of this region degrading the classification performance of the network 
dramatically. Therefore, in order to obtain a high success ratio in classification 
the system should provide rotation, scaling, and translation correction before 
attempting to classify. Such invariancy can be achieved by a preprocessor with 
the following properties: •

• The preprocessor should map the transformationally distorted or noisy ver­
sions of a pattern to a unique and stable output pattern.

.1.1
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Figure 3.1: Block diagram of RST, the pattern classification system.

• The mapping algorithm should be easy to compute. That is, it should not 
increase the overall complexity of the recognition system. A preprocessor 
that is functioning much slower than the classifier and/or the interpreter 
would turn out to be a bottleneck increasing the classification time per 
pattern.

Selecting good features for relatively complex patterns, like the human face 
or finger prints, turns out to be impractical or even impossible [13]. The problem 
is more acute when there is no prior knowledge on the patterns to be classi­
fied. Therefore, a system to automatically extract the useful features is essential. 
Artificial neural networks can extract information during the training process 
[21]. The hidden layers and the neurons in the hidden layers detect the relevant 
features in the images.

RST, the pattern classification system introduced in this work has a modular 
structure consisting of three main blocks, a preprocessor, a classifier, and an 
interpreter. The blocks are cascaded in order such that the original image is first 
preprocessed, then classified, and finally the results are interpreted. Figure 3.1 
shows the block diagram for the pattern classification system.
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Figure 3.2: Block diagram of the preprocessor.

3.1 PREPl: The Preprocessor with Radial Scal­
ing Correction

Feature extraction does not take place in the preprocessor. Its function is to pro­
vide rotational, scaling, and translational invariancy on the input image. Both the 
input and the output of the preprocessor are images in pixel-map form. Certain 
functions are performed on the input image and the resulting modified image is 
generated at the output. The preprocessor has three cascaded blocks, namely R- 
Block, S-Block, and T-Block. The block diagram is given in Figure 3.2. R-Block 
is to maintain rotational invariancy, while S-Block is for scaling invariancy, and 
T-Block is for translational invariancy.

The order in which the blocks are cascaded is determined mainly by the func­
tional dependencies between these blocks. In the first implementation of the 
preprocessor, named PREPl, T-Block comes first, S-Block second, and R-Block 
last. Since the scaling and rotation operations need a proper pivot point to func­
tion on, the T-Block is positioned before the two blocks. T-Block will maintain 
translational invariancy and the origin will be the pivot point for the scaling and 
rotation blocks. Further, placing S-Block in front of the R-Block will bring the 
following two advantages:

S-Block will mostly prevent the pattern from flowing out of the image by 
a rotation operation. Consider an image containing a bone pattern where 
the bone diagonally extends between the corner points. Since our grid is 
of rectangular type, not a circular grid, the two ends of this pattern will



CH APTER 3. THE PATTERN CLASSIFICATION SYSTEM 14

flow out of the image after a rotation of 45 degrees. However, performing 
scaling correction beforehand would bring a radial boundary for the pattern 
decreasing the effect of the mentioned problem.

S-Block will adjust the number of pixels that are active -  called on-pixels 
and will regulate the information flowing into the R-Block. The perfor­
mance of R-Block degrades when the number of on-pixels is only a small 
portion of the total number of pixels. Hence, performing scaling correction 
will enable a better performance in providing rotational invariancy.

3.1.1 The T-Block

T-block maintains translational invariancy by computing the center of gravity of 
the pattern and translating the image so that the center of gravity coincides with 
the origin. Resulting image is passed to the S-Block. The center of gravity is 
computed by averaging the x and y coordinates of the on-pixels, as formulated 
below:

Define P to be the number of on-pixels:

N N

p  =
t= l i = l

Then the center of gravity, {xav̂ Vav)̂  will be:

2 N N 

^ i=l j=l 
N N

(3.1)

Va« =  4  £  £  Vi) ■ ViP r .^ t=lj=l

(3.2)

(3.3)

where function f{x-,y) gives the value of the pixel at the coordinates (x ,j/). For 
digitized binary-valued 2-D images this function will be either 0 or 1. If x or 
y, the arguments of the function, are not integers then they are rounded to the 
nearest integer to obtain the pixel coordinates.
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\
_____

V

Figure 3.3: A sample pattern before and after the T-Block. 

The mapping function for the translation invariant image is:

f(,^i Vj Vav) (3.4)

Function / t (·) is similar to / ( · )  except that it is for the output image of the 
T-Block which is translation invariant. Figure 3.3 shows the function of the 
T-Block on a sample patteni.

3.1.2 The S-Block

S-Block maintains scaling invariancy by scaling the image so that the average 
radius for the on-pixels is equal to one-fourth of the grid size. The term radius 
for a pixel is defined to be the length of the straight line connecting the pixel 
and the origin. The scaling process will bring a radial boundary to the pattern in 
the image while adjusting the number of on-pixels. It thus disables any possible 
pattern deformation caused by rotation and regulates the information flowing 
into the R-Block. The average radius is computed as:

„ V  ‘ ,-------T ■ \/^? +  y] (3-5)

and the scale factor, s, is given by:

Rs = (3.6)

where R is equal to one-fourth of the grid size.
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\
V

Figure 3.4: The sample pattern before and after the S-Block. 

The mapping function for the scaling invariant image is:

h s(ii,V i) =  h ( s  -x i ,s ·  yj) (3.7)

Function fTs{·) is similar to / t (·) except that it is for the output image of the 
S-Block which is scaling invariant. Figure 3.4 shows the function of the S-Block 
on the sample image processed by the T-Block.

Equation 3.7, the mapping function for the S-Block, embeds the nice interpo­
lation property. In this equation, the pixels of the output image are mapped back 
to their corresponding pixels in the input image. This is called reverse mapping 
and brings the interpolation property. Consider a case where the forward map­
ping technique is used, and two on-pixels that are adjacent in the input image are 
mapped to two apart pixels in the output image. There would be a disconnection 
between these on-pixels in the output image. However, using reverse mapping 
both the apart pixels and the pixels between them are mapped back to one of 
the original pixels, thus maintaining the connectivity of the pattern. A scetch 
illustrating this discussion is given in Figure 3.5.

3.1.3 The R-Block

R-block maintains rotational invariancy by rotating the image so that the direc­
tion given by R-Block function coincides with the x-axis. The R-Block function 
computes the direction of maximum variance for pixels in a given input image.
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Figure 3.5; The forward mapping technique and the interpolation property by 
the reverse mapping technique used in the S-Block.

The derivation of the function is based on the Karhunen-Loeve transformation 
which has been referred in some applications [9, 13, 16]. The transformation 
states: Given a set of vectors, the eigenvector that corresponds to the greatest 
eigenvalue of the covariance matrix calculated from the set of vectors, points in 
the direction of maximum variance [9, 13]. This property can be used to maintain 
rotational invariancy since detection of the maximum variance direction will also 
reveal the rotation angle. A general solution for any size of vectors would be 
impractical. However, for 2-D vectors formed by the x and y coordinates of the 
on-pixels the eigenvalues are easy to compute and a formula for the eigenvector 
corresponding to the greatest eigenvalue can be derived from the 2 by 2 covari­
ance matrix. Hence, from the above discussions, the rotation parameters can be 
derived as:

Define:

rrix

rUy Efe. E U  fT s U ,y j) f^ ,U

N N

^ ^ f T s { x i , y j )
Vi

(3.8)
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N N

- P  =  E  E  f T s { x i ,  Vj)
i=l  j = l

(3.9)

r.x  =  E i ; /T s ( x , . , ! / i ) . x ?  T „ = - £ i 2 f r s ( x i , y i ) - y ]  (3.10)
1=1 j=l i=l j=l

N N

frsixi, Vj) · Xi ■ Vj (3-11)
t=l j=l

The covariance matrix defined as:
T

C =

can be simplified to: 

(7 =

1 X

y

m. X

y

m. (3.12)

■1 N N X{ Xi
T\

TUx TUx

y 2 ^ « = i Y : j = i f T s { x i , y j ) i ^ i j = i . y j  . . y j  . J . ^ y  . . ^ y  .
(3.13)

Since translational invariancy has been maintained, the averages rtix and rUy are 
zero. Furthermore, the averaging term in front of the matrix can be eliminated 
since it does not change the direction of the eigenvectors. Therefore the covariance 
matrix comes out as:

C =
T T
T T-L xy J. yy

(3.14)

Finally (detailed derivation is given in Appendix A), the sine and cosine of the 

rotation angle come out as:

i'̂ yy ~ '̂ xx) T “  Txx)"̂  +  4 · T̂ y
sin 6 —

2· \j{'̂ yy Txx)'̂  +  4 · +  {Tyy Ta;a;)j {Tyy Txx)"̂  +  4 ' T̂ y
(3.15)

COS e =
2 -Zxy

\/{'̂ yy ~ TxxY +  i-T^y +  {Tyy -  Tix)] ^{Tyy -  TxxY +  4 ·
(3.16)

The mapping function for the rotation invariant image is:

fTsn{xi, yj) =  / t s ' ( cos  0 -Xi +  sin 6 ■ i/j, -  sin 6> · Xi +  cos6 ■ pj) (3.17)
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Figure 3.6: The sample pattern before and after the R-Block.

Function fTSR(') is similar to / ts(·) except that it is for the output image of the 
R-Block which is rotation invariant. Figure 3.6 shows the function of the R-Block 
on the sample pattern processed by the S-Block.

3.2 PREP2: The Preprocessor with Axial Scal­
ing Correction

PREPl, the preprocessor introduced in the previous section, performs radial scal­
ing correction. That is, PREPl uses the same scaling factor along all directions. 
A different approach would be using different scaling factors along different axes. 
This type of scaling correction will uniquely map patterns regardless if they are 
thinner, thicker, shorter, or taller than their original forms when they were first 
presented. Hence the preprocessor with axial scaling correction, named PREP2, 
is developed after this approach. PREP2 has two main differences from the pre­
vious version: •

• The main blocks are reordered, such that T-Block is first, R-Block is second, 
and S-Block is last.

The scaling factors are computed using a different function.
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In order to maintain rotational, scaling, and translational invariancy PREP2 com­
putes the corresponding values as (detailed derivation is given in Appendix B):

N N

P =
t= l i = l

1 N N
Xn

1=1 j = l  

N N

2/ot. =  -H IZ X ] Vi) · Vj
t= l i = l

(

N N \

Pyy =  Vj) ■ j  - P  -y.

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

sin 0 =

(
N N \

^3 53 yi) ' ' y ^  ' ^ 0,v * Vav

( T , y  -  T , , )  + ^(T„ -  + 4 ■ Jg,

^2  · [ , / (T „  -  T,„Y  +  4.72^ +  {T „  -  r , . ) ]  +  4 ■
(3.24)

COS Ö =
2 -Tly

y/2 ■ y { T „  -  r . , 7 + 4  ■ T l  +  (T „ -  r „ ) ]  ,/(T„ -  +  4 ■ T l
___________________________________ (3.25)

R x -P*5 —

5y =

Tj;j;(cos Oy -1- 2 · ’ COS 0 ' sin 9 -f ryj,(sin Ö)̂

I pT p

(3.26)

(3.27)
Tra;(sin 0)2 — 2 · Ti;y · cos 6 · sin 6 -f Tyy (cOS oy  

where Sx and Sy are the scaling factors, and Rx and Ry are the desired deviation 
values along the corresponding axes. Rx and Ry are equal to the grid size.

The mapping function for the preprocessor with axial scaling correction is:

ItRsİ İ̂, Vi) =  f{Sx · (cos 0 ■ {Xi -  Xav) + sin0· (t/j -  J/av)) ,

Sy · ( sin 9 ' (x,' Xqv̂  d” cos 9 * (l/j *“  2/au))) (3.28)
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Function fTRs{·) is similar to / ( · )  except that it is for the output image of PREP2 
which is rotation, scaling, and translation invariant. There is a one step mapping 
from the original image function to the preprocessor output function. Note that, 
for PREPl the complete mapping function could be obtained only after two 
passes over the original image. However, for PREP2 the whole mapping function 
can be computed after a single pass over the original image.

3.3 The Classifier

The current implementation of the system employs a multilayer feed-forward 
network for the classifier block. Such a network has a layered structure and only 
connections between neurons at subsequent layers are permitted. The training 
algorithm is the widely used backpropagation algorithm [21]. Since the input is 
an image in pixel-map form, the number of nodes in the input layer is fixed and 
equal to the number of pixels. Further, since the output neurons are organized 
such that each node represents a class, the number of output neurons is also fixed. 
Hence, given the input and output layer size one should decide on the number 
of hidden layers and the number of neurons in each hidden layer as well as the 
learning rate. In fact, this choice of network size is as critical as the choice of 
the learning rate. The decision depends on the type of the problem dealt with, 
and on the size and variety of the example patterns. There are two useful rules 
to have in mind:

• One should choose the network large enough so that the neurons can develop 
features to distinguish the patterns belonging to different classes, while as 
compact as possible to avoid memorization of the example patterns, •

• One should choose the learning rate small if two or more of the example 
patterns are similar, and large otherwise.



CH APTER 3. THE PATTERN CLASSIFICATION SYSTEM 22

ROW 1

ROW 2

ROWN

Figure 3.7: The structure and image feeding strategy to the classifier.

The general structure of the neural network classifier is given in Figure 3.7. The 
output of the preprocessor, which is an image in pixel-map form, is converted 
to a linear array by cascading the rows of the image from the top row to the 
bottom row. The content of each array entry is the initial input value of the 
corresponding input node.

The classifier has two phases:

1. The training phase : The preprocessed forms of the images containing 
the sample patterns from each class are fed to the network, while the desired 
output patterns are supplied to the output neurons. The artificial neural 
network learns to produce the desired outputs when the sample inputs are 
given to the system.

2. The classification phase : There is no learning in the classification phase, 
instead the network only runs through forward passes mapping preprocessed 
images to output patterns. The artificial neural network is initialized with



CH APTER 3. THE PATTERN CLASSIFICATION SYSTEM 23

the weights obtained at the training phase. The preprocessed image is fed 
to the classifier and activation values of the neurons in the consecutive 
layers are calculated towards the output layer. Finally, the output pattern, 
formed by the activation values of the output neurons, is calculated and 
the forward pass is over. The output pattern contains the classification 
information. These values are passed to the interpreter for the decision to 
be made.

3.4 The Interpreter

One of the key determinants of the system performance is the success in inter­
pretation of the classifier outputs. Since we have employed an artificial neural 
network for the classifier, the classification result will be in the form of activation 
values of the neurons in the output layer. In other words, the membership of 
the input pattern to each class will be represented by the activation value of the 
corresponding output neuron. A value close to 1 would be interpreted as a strong 
membership, while a value close to 0 would point a loose membership.

It is hard to decide on the method to be used so that none of the information 
that serves to distinguish the classes is ignored. The first alternative is to use a 
simple maximum finder block for the interpreter. However the performance would 
be moderate since it will always decide on one of the classes whether the class 
chosen is dominant on others or not. Since some input images will not contain any 
meaningful pattern or will contain patterns irrelevant with the previously sample 
patterns, a maximum finder block will fail to classify by deciding on one of the 
classes. Some level of thresholding can be applied to the outputs so that none of 
the classes is selected if none of the outputs exceeds this predetermined threshold. 
However this method may indicate multiple classes for certain inputs. This will 
be typical when two or more of the classifier’s outputs exceed the threshold. A 
more promising method is to report no discrimination as long as the ratio of



CH APTER 3. THE PATTERN CLASSIFICATION SYSTEM 24

the maximum output to the next highest output remains under a predetermined 
threshold value. When the ratio exceeds the threshold, which means that the 
maximum output is dominant on the other outputs, the interpreter decides on the 
class with the maximum output. The interpreter block of the introduced pattern 
classification system employs the last mentioned method. If the ratio of the 
maximum output to the next highest output exceeds the predetermined number, 
the interpreter reports that a discrimination could be made and the pattern 
belong to the class with the maximum output. If not, then the interpreter reports 
that no unique discrimination could be made. This simple method performs well 
in the evaluation of the classifier outputs.



Chapter 4

Experimental Results

Based on the formulations described in the previous sections, a general purpose 
pattern classification system has been developed on Sun workstations using the 
graphics environment SunView [22]. The system is capable of performing rota­
tional, scaling, and translational transformations as well as adding noise on an 
input image. There are two type of inputs to the system; first, in the form of 
a single grid image; second, as a camera scanned raster image. It directly per­
forms classification on the single grid image, while for the raster image it scans 
and detects patterns and performs classifications thereon. The artificial neural 
network block uses the resulting weights of the backpropagation simulator HY­
PERBP developed on the iPSC/2 hypercube multicomputer [18]. Hence, in order 
to experiment on some new pattern classification problem the process goes on as 
follows: The example patterns are first preprocessed, then the preprocessed im­
ages are copied into iPSC/2 to be used as input patterns for the backpropagation 
simulation. The resulting weights are copied back to Sun machines and used in 
the classification system thereon.

25
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Network
configuration
1024 - 5 - 26

1024 - 10 - 26
1024 - 15 - 26
1024 - 20 - 26
1024 - 25 - 26
1024 - 30 - 26

1024 - 10 - 5 - 26
1024 - 10 - 10 - 26
1024 - 20 - 5 - 26
1024 - 20 - 10 - 26
1024 - 20 - 20 - 26

Number of 
epochs

no convergence
160
100
50
50
40

no convergence
290

n o  c o n v e r g e n c e

230
no

Success
ratio

72%
86%
93%
90%
93%

72%

87%
84%

Table 4.1: Number of training epochs and success ratios for some network con­
figurations.

4.1 Character Recognition on the English Al­
phabet

This classical problem is the classification of letters in the English alphabet. The 
artificial neural network chosen for classifying English alphabet is a multilayer 
feed-forward network. There are 1024 input nodes, each one corresponding to one 
of the pixels of the 32 x 32 input image. An output neuron is reserved for each 
pattern class, making up a total of 26 output neurons. These output neurons 
will compute the membership function for the pattern to the corresponding class. 
A value close to 1 will be interpreted as a strong membership, while a value 
close to 0 will point a loose membership. The number of hidden layers and 
the number of neurons in each hidden layer is found by trial-and-error, which 
is typical for most multilayer feed-forward network applications [1, 3, 4, 8, 12, 
16]. Table 4.1 summaries the performances for different network configurations. 
The represeirtation used in network configuration is such that the first number
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shows the number of input nodes, the last number shows the number of output 
neurons, and the numbers between them show the number of neurons in the 
corresponding hidden layer. The success ratio is the averaged percentage of the 
correctly classified patterns for three 512 x 512 pixel images, namely Imagel, 
Image2, and ImageS given in figures Figure 4.7 through Figure 4.9. Number of 
epochs is the number of epochs needed in the training phase until the network 
successfully classifies all of the example patterns. One epoc/i refers to one complete 
pass over all the example patterns. As seen from Table 4.1, the 1024 - 20 - 26 
network has the best success ratio vs. number of neurons figure. Hence, the 
network has been chosen to have 1024 input nodes, 20 neurons in the single 
hidden layer, and 26 neurons in the output layer.

In the training phase, the network is trained on the input example patterns 
until it manages to successfully classify the letters. Note that R-Block rotates the 
pattern until the computed orientation coincides with the x-axis. Since some pat­
tern and its 180 degrees rotated version will have the same orientation, R-Block 
will not be able to dilferentiate between them and will perform same airgle of 
rotation on both patterns. The resulting mappings will conserve the 180 degrees 
angle difference. Hence depending on its original orientation, a given pattern will 
be mapped to one of the two canonical patterns. These two canonical patterns 
will both represent the class. Therefore, the training set is formed of 52 example 
patterns where there are two preprocessed patterns for each class, being the pre- 
processed forms of the letters. The example patterns for the English letters and 
their corresponding classes are given in Figure 4.1.

Figure 4.2 through Figure 4.6 give the system performance on single grid im­
ages. The employed preprocessor is PREPl. Images are 32 x 32 pixels. First 
column is the original image given to the system. Second column is the pre- 
processed version of the original image, and finally third column is the resulting 
decision. The class name and value of the corresponding output neuron are given.

Figure 4.7 through Figure 4.9 give the system performance on camera scanned
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A B C D E F G H I  1 2 3 4 5 6 7 8 9  

J K L M N 0 P Q R 101112131415161 7 18 

S T U V W X Y Z 19 20 21 22 23 24 25 26

Figure 4.1: The example patterns and corresponding class numbers for the 26 
English letters.

A

y r <

Pattern is R with 0.927701 
Candidate was Y with 0.021057 
Discrimination ratio is 440.6 %

Pattern is fl with 0.772268 
Candidate was V with 0.053143 
Discrimination ratio is 145.3 %

Pattern is fl with 0.722949 
Candidate was V with 0.029526 
Discrimination ratio is 244.8 X

B oa
w

Pattern is B with 0.905775 
Candidate was D with 0.030358 
Discrimination ratio is 298.7 X

Pattern is B with 0.894358 
Candidate was D with 0.036271 
Discrimination ratio is 246.6 X

Pattern is B with 0.797724 
Candidate was E with 0.026937 
Discrimination ratio is 296.1 X

C a
o o
o o

Pattern is C with 0.936130 
Candidate was U with 0.031950 
Discrimination ratio is 292.9 X

Pattern is C with 0.900459 
Candidate was U with 0.030605 
Discrimination ratio is 294.2 X

Pattern is C with 0.872540 
Candidate was U with 0.032755 
Discrimination ratio is 266.4 X

Figure 4.2: Classification results with PREPl for letters A, B, and C rotated by
0, 60, and -60 degrees.
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A
A ■<
A

Pattern is R with 0.927701 
Candidate was Y with 0.021057 
Discrimination ratio is 440.6 X

Pattern is fl with 0.605121 
Candidate was V with 0.040005 
Discrimination ratio is 151.3 X

Pattern is fi with 0.501417 
Candidate was K with 0.160918 
Discrimination ratio is 29.7 X

B OQ
B 03
Bep

Pattern is B with 0.917553 
Candidate was D with 0.075526 
Discrimination ratio is 121.5 X

Pattern is B with 0.733702 
Candidate was E with 0.061952 
Discrimination ratio is 118.4 X

Pattern is B with 0.906775
Candidate was D with 0.030358
Discrimination ratio is 298.7 X

C n
C a
C n

Pattern is C with 0.936130 
Candidate was U with 0.031960 
Discrimination ratio is 292.9 X

Pattern is C with 0.835518 
Candidate was U with 0.030429 
Discrimination ratio is 217.7 X

Pattern is C with 0.789987 
Candidate was L with 0.041864 
Discrimination ratio is 180.7 X

Figure 4.3: Classification results with PREPl for letters A, B, and C scaled by 
a factor of 1, 0.8, and 0.6.

A <
A i

<
A

Pattern is fl with 0.927701 
Candidate was Y with 0.021057 
Discrimination ratio is 440.6 X

Pattern is fl with 0.770125 
Candidate was R with 0.041840 
Discrimination ratio is 104.0 X

Pattern is fl with 0.927701 
Candidate was Y with 0.021057 
Discrimination ratio is 440.6 X

B CQ
B =Q
Bm

Pattern is B with 0.906775 
Candidate was D with 0.030358 
Discrimination ratio is 290.7 X

Pattern is B with 0.514692 
Candidate was F with 0.029781 
Discrimination ratio is 172.8 X

Pattern is B with 0.840754 
Candidate was D with 0.099396 
Discrimination ratio is 05.4 X

C C 3

C o

C o

Pattern is C with 0.936130 
Candidate was U with 0.031960 
Discrimination ratio is 292.9 X

Pattern is C with 0.707669 
Candidate was U with 0.042863 
Discrimination ratio is 165.1 X

Pattern is C with 0.905177 
Candidate was 0 with 0.019097 
Discrimination ratio is 454.9 X

Figure 4.4: Classification results with PREPl for letters A, B, and C translated
diagonally by 0, 6, and -6 pixels.
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A
A
A

Pattern is fl with 0.927701 
Candidate was Y with 0.021057 
Discrimination ratio is 440.G %

Pattern is R with 0.521594 
Candidate was R with 0.035405 
Discrimination ratio is 147.3 X

Pattern is F with 0.107739 
Candidate was V with 0.047904 
Discrimination ratio is 22.5 X

B CQ
i
i' m

Pattern is B with 0.79698G 
Candidate was E with 0.03286G 
Discrimination ratio is 242.5 X

Pattern is B with 0.783350 
Candidate was R with 0.035924 
Discrimination ratio is 218.1 X

Pattern is B with 0.906775
Candidate was D with 0.030358
Discrimination ratio is 298.7 X

C <T3
c o
c

Pattern is C with 0.93G130 
Candidate was U with 0.031960 
Discrimination ratio is 292.9 X

Pattern is C with 0.877739 
Candidate was 0 with 0.049185 
Discrimination ratio is 178.5 X

Pattern is C with 0.734900 
Candidate was U with 0.024792 
Discrimination ratio is 296.5 X

Figure 4.5: Classification results with PREPl for letters A, B, and C with 0%, 
20%, and 40% noise.

A
<

Pattern is fl with 0.927701 
Candidate was Y with 0.021057 
Discrimination ratio is 440.6 X

Pattern is R with 0.283534 
Candidate was V with 0.081742 
Discrimination ratio is 34.7 X

Pattern is R with 0.713344 
Candidate was R with 0.023365 
Discrimination ratio is 305.3 X

B QQ
t»
m

Pattern is B with 0.906775 
Candidate was D with 0.030358 
Discrimination ratio is 298.7 X

Pattern is B with 0.479234 
Candidate was R with 0.083784 
Discrimination ratio is 57.2 X

Pattern is B with 0.832631 
Candidate was R with 0.035072 
Discrimination ratio is 237.4 X

C a
a oo o

Pattern is C with 0.936130 
Candidate was U with 0.031960 
Discrimination ratio is 292.9 X

Pattern is C with 0.854943 
Candidate was U with 0.040233 
Discrimination ratio is 212.5 X

Pattern is C with 0.577801 
Candidate was 0 with 0.026685 
Discrimination ratio is 216.5 X

Figure 4.6: ClcLSsification results with PREPl for letters A, B, and C with random
translation, scaling, and rotation applied.
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RADIOACTIVEVASTES
INANUNDERGROUND
DISPOSALMAYCOME
IHTOCONTACTPITH

RADIOACTIVEVASTES
INANUNDERGROUND
DISPOSALMAYCOME
IHTOCONTACTPITH

Figure 4.7; Imagel, a512 x 512 pixel image of English text (left), the claissifica- 
tion results with PREPl for Th =  0 (right top), and for Th =  2 (right bottom).

raster images of English text. The preprocessor is PREPl. The images are 
512 X 512 pixels. Classification is done by segmenting each letter, then position­
ing the 32 X 32 grid on the letter, and performing a neural network forward pass. 
Segmentation process is for boxed-discrete characters. That is, it is assumed that 
each single pattern can be boxed without interference from the neighboring pat­
terns. For a better evaluation, two separate passes over the image is performed, 
first when the interpreter threshold set to 0 and second the threshold set to 2. 
First forces the interpreter to choose one of the classes, while the second enables 
the interpreter to report no discrimination between the classes, represented by 
“?” in the output. The average success ratio for the given images of English text 
is 93%, which is considered as acceptable, for a general purpose pattern classifier. 
The number of floating point operations performed during a forward pass is:

multiplicationsadditions : 2 x (1024 x 20 +  20 x 26)

total : 42000
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R A D I O A C T I V E W A S T E S  

I N A N U N D E R G R O U N D  

D I S P O S A L  MAYCOME  

I N T O C O N T A C T WI T H  

U N D E R G R O U N D WA T E R  

A F T E R S O M E T I M E  

T H U S L E A D I N G T O  

C 0 N T A MI N A T. I 0 N 0 P 

E N V I R O N M E l ( ^

RRDIORCTIVBWRSTBS
INRNUNDBRGRODHD
DISP05VLMRYC0VE
IXTOCONTVCTWITH
UNDERGROUNDWRTBR
RFTERSOMETIMB
THUSLERDINGTO
CONTRMIHRTIOHOF
BNVIRONMEhlT

RRDIORCTIVBWflSTBS
INRNUND7RGR07HD
DISP0SVLM7YC0VE
IXTOCONTVCTVITH
UNDERGR0UNDV7T7R
RFTERS0METI77
THUSLERDINGTO
C0NTRMI7RTI0H0F
BNVIR0N77NT

Figure 4.8: Image2, a 512 x 512 pixel image of English text (left), the classifica­
tion results with PREPl for Th =  0 (right top), and for Th =  2 (right bottom).

THI5ISRSRJPLE
TBXTFORPRTTERN
CLRSSIFICRTION

THISISRSR7PLE
T7XTF0RPRTTERN
CLRSSIFICRTION

Figure 4.9: ImageS, a 512 x 512 pixel image of English text (left), the clcissifica-
tion results with PREPl for Th =  0 (right top), and for Th =  2 (right bottom ).
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A <
<

> <

Pattern is 1 with 0.911179 
Candidate was 22 with 0.04G750 
Discrimination ratio is 19.5

Pattern is 1 with 0.762654 
Candidate was 9 with 0.067812 
Discrimination ratio is 11.2

Pattern is 1 with 0.830162 
Candidate was 9 with 0.151426 
Discrimination ratio is 5.5

B 0
m
03

Pattern is 2 with 0.624327 
Candidate was 21 with 0.05GG3B 
Discrimination ratio is 11.0

Pattern is 2 with 0.559115 
Candidate was 21 with 0.051234 
Discrimination ratio is 11.1

Pattern is 2 with 0.779841
Candidate was 19 with 0.072447
Discrimination ratio is 10.8

c u
o Q
o Q

Pattern is 3 with 0.865484 
Candidate was 12 with 0.046633 
Discrimination ratio is 18.6

Pattern is 3 with 0.817947 
Candidate was 12 with 0.086025 
Discrimination ratio is 9.5

Pattern is 3 with 0.818400 
Candidate was 12 with 0.047264 
Discrimination ratio is 17.3

Figure 4.10: Classification results with PREP2 on rotated letters.

On Sun4 Sparc workstations, the average classification speed of the system is 7 
patterns per second.

Figure 4.10 through Figure 4.14 give performance on single grid images, where 
the employed preprocessor is PREP2.

Figure 4.15 through Figure 4.17 give the performance on the previously intro­
duced images of English text. The preprocessor is PREP2, and average success 
ratio for these images is 91%.

Figure 4.18 compares the classification results for two versions of the system, 
one with PREPl and other PREP2. The input patterns are 10 handcrafted 

English letters.

Figure 4.19 gives the system performance for input images containing English 
text of different fonts. The seven fonts are: New Century Schoolbook, Bookman, 
Boston, Courier, Helvetica, Monaco, and Times. Figure 4.20 gives the system
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<

Pattern is 1 with G.911179 
Candidate was 22 with 0.046750 
Discrimination ratio is 19.5

Pattern is 1 with 0.770966 
Candidate was 22 with 0.062064 
Discrimination ratio is 12.3

Pattern is 1 with 0.425590 
Candidate was 25 with 0.185589 
Discrimination ratio is 2.3

B Q3
B 9
B 9

Pattern is 2 with 0.161977 
Candidate was 4 with 0.070025 
Discrimination ratio is 2.1

Pattern is 2 with 0.634949 
Candidate was 10 with 0.071779 
Discrimination ratio is 8.8

Pattern is 2 with 0.779841
Candidate was 19 with 0.072447
Discrimination ratio is 10.8

C 0
c 0
c 0

Pattern is 3 with 0.865484 
Candidate was 12 with 0.046633 
Discrimination ratio is 18.6

Pattern is 3 with 0.815480 
Candidate was 12 with 0.074951 
Discrimination ratio is 10.9

Pattern is 3 with 0.709035 
Candidate was 12 with 0.067718 
Discrimination ratio is 10.5

Figure 4.11: Classification results with PREP2 on scaled letters.

A <

Pattern is 1 with 0.911179 
Candidate was 22 with 0.046750 
Discrimination ratio is 19.5

Pattern is 1 with 0.807283 
Candidate was 25 with 0.077792 
Discrimination ratio is 10.4

Pattern is 1 with 0.781699 
Candidate was 9 with 0.074611 
Discrimination ratio is 10.5

B n
B 9
B GQ

Pattern is 2 with 0.779841 
Candidate was 19 with 0,072447 
Discrimination ratio is 10.8

Pattern is 2 with 0.426662 
Candidate was 10 with 0.191974 
Discrimination ratio is 2.2

Pattern is 2 with 0.496783 
Candidate was 19 with 0.050108 
Discrimination ratio is 9.9

c Q
c 0

c 0

Pattern is 3 with 0.865404 
Candidate was 12 with 0.046633 
Discrimination ratio is 18.6

Pattern is 3 with 0.712326 
Candidate was 12 with 0.211969 
Discrimination ratio is 3.4

Pattern is 3 with 0.671936 
Candidate was 12 with 0.099324 
Discrimination ratio is 6.8

Figure 4.12: Classification results with PREP2 on translated letters.
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Pattern is 1 with 0.911179 
Candidate was 22 with 0.046750 
Discrimination ratio is 19.5

Pattern is 1 with 0.721102 
Candidate was 25 with 0.119924 
Discrimination ratio is 6.0

Pattern is 1 with 0.775800 
Candidate was 25 with 0.131237 
Discrimination ratio is 5.9

B S3
B
§

Pattern is 2 with 0.689617 
Candidate was 18 with 0.058586 
Discrimination ratio is 11.8

Pattern is 2 with 0.105599 
Candidate was 4 with 0.052336 
Discrimination ratio is 2.0

Pattern is 2 with 0.779841
Candidate was 19 with 0.072447
Discrimination ratio is 10.8

c 0
c Q
c Q

Pattern is 3 with 0.865484 
Candidate was 12 with 0.046533 
Discrimination ratio is 18.6

Pattern is 3 with 0.753888 
Candidate was 7 with 0.223764 
Discrimination ratio is 3.4

Pattern is 3 with 0.788500 
Candidate was 7 with 0.127391 
Discrimination ratio is 6.2

Figure 4.13: Classification results with PREP2 on noisy letters.

Pattern is 1 with 0.911179 
Candidate was 22 with 0.046750 
Discrimination ratio is 19.5

Pattern is 1 with 0.353124 
Candidate was 25 with 0.109775 
Discrimination ratio is 3,2

Pattern is 1 with 0.750400 
Candidate was 25 with 0.078528 
Discrimination ratio is 9.6

B 0
0

CQ 0

Pattern is 2 with 0.779841 
Candidate was 19 with 0.072447 
Discrimination ratio is 10.8

Pattern is 2 with 0.304856 
Candidate was 4 with 0.141030 
Discrimination ratio is 2.2

Pattern is 2 with 0.285387 
Candidate was 18 with 0.099175 
Discrimination ratio is 2.9

c 0
CJ0
o 0

Pattern is 3 with 0.865484 
Candidate was 12 with 0.046633 
Discrimination ratio is 18.6

Pattern is 3 with 0.652949 
Candidate was 16 with 0.076594 
Discrimination ratio is 8.5

.Pattern is 3 with 0.692806 
Candidate was 12 with 0.083135 
Discrimination ratio is 8.3

Figure 4.14: Classification results with PREP2 on letters with random transla­
tion, scaling, and rotation applied.
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R A D I O A C T I V E  WA S T E S  

I N A N U N D E R G R O U N D  

D I S P O S A L M A Y C O M E  

I N T 0 C 0 N T A C T W I T[H]

RflDIOflCTIVEVRSTES
INflNUNDERGROUND
DISPOSflLMfiYCOME
INTOCOHTfiCTWITH

RRDIOflCTIVEVflSTES
INRNUNDERGROUN?
DISPOSRLMRYCOM?
INT070NTRCTV7TH

Figure 4.15: Imagel (left), the classification results with PREP2 for Th =  0 (right 
top), and for Th =  2 (right bottom).

R A D I O  A C T I V E W A S T E S
RRDIORCTiVZVRSTES
INRNUNDKRGROUJU

I N A N U N D E R G R O U N D
DISPOSVLMRYCOVE
INTOCONTRCTJITH

D I S P O S A L  M A Y C O M E
LNDERGROUNDVRTER
RYTERSOVETIVE

I N T O C O N T A C T W I T H
TRUSLERDINGTO
CONTRMINRTIONOF

U N D E R G R O U N D W A T E R

A F T E R S O M E T I M E

2NVIR0NW2NT

RRDI0RCTI72VRSTES
INRNUNDKRGR0U7U

T H U S L E A D I N G T O
DISP0SVLM7YC07E
INTOCONTRCTJITH

C O N T A M I N A T I O N O F
LNDERGROUNDWRTER
RYTERSOVETIVE

B N V I R O N M E l { ^
TRUSLERDINGTO
COHTRMINRTIONOF
2NVIR0NV2NT

Figure 4.16: Image2 (left), the classification results with PREP2 for Th =  0 (right 
top), and for Th =  2 (right bottom).
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THISISRSfiHPLK
TBXTPORPRTTBRN
CLRSSIFICRTION

THISISRSRHPL?
T7XTPORPRTT7RN
CLRSSIFICRTION

Figure 4.17: Image3 (left), the classification results with PREP2 for Th =  0 (right 
top), and for Th =  2 (right bottom),

performance for the same images applied to a network trained on letters of Roman 
and Monaco font. Table 4.2 summaries the classification performance of the 
system with PREPl and PREP2. The first two columns are results for the 
network trained on letters of Roman font, which is the network used up to this 
point. Last two columns are results for a network trained on letters of both 
Roman and Monaco font. For the Roman font network, the average success ratio 
for PREPl is 70%, while for PREP2 is 68%. However, for the Roman and Monaco 
network the average success ratio for PREPl rises to 90%, and for PREP2 to 89%. 
Note that, initially the network was trained on letters of Roman font and these 
texts of seven different fonts are completely new to the network. Also note that, 
the 20% increase in the overall success ratio is achieved by simply adding the 
letters of worst classified font into the training set.
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K
k -<

<
c o
P -0
H
N
c u
U ZD
j

Pattern is K with O.739S05 
Candidate was R with 0.02G135 
Discrimination ratio is 28.3

Pattern is K with 0.138077 
Candidate was R with 0.0458*42 
Discrimination ratio is 3.0

Could not discriminate ... 
Candidates were fl with 0.179557 

and V with 0.093892

Pattern is C with 0.335336 
Candidate was J with 0.067349 
Discrimination ratio is 5.9

Pattern is P with 0.619575 
Candidate was V with 0.035673 
Discrimination ratio is 17.4

Pattern is H with 0.504894 
Candidate was K with 0.091623 
Discrimination ratio is 5.5

Pattern is T with 0.2423G0 
Candidate was M with 0.058771 
Discrimination ratio is 4.1

Pattern is C with 0.446178 
Candidate was G with 0.058094 
Discrimination ratio is 7.7

Pattern is 0 with 0.333856 
Candidate was N with 0.055340 
Discrimination ratio is 6.0

Pattern is L with 0.370625 
Candidate was V with 0.065969 
Discrimination ratio is 5.6

K
k <
<

C 0
P >
H
N
c u
U D
j

Pattern is 11.K with 0.200723 
Candidate was 18.R with 0.088717 
Discrimination ratio is 2.3

Pattern is l.fl with 0.328702 
Candidate was 18.R with 0.134324 
Discrimination ratio is 2.4

Could not discriminate ... 
Candidates were l.fl with 0.156431 

and 18.R with 0.11446

Pattern is 3.C with 0.239498 
Candidate was 12.L with 0.062020 
Discrimination ratio is 3.9

Pattern is 16.P with 0.253201 
Candidate was 22.V with 0.030780 
Discrimination ratio is 6.5

Pattern is 21.U with 0.388433 
Candidate was 18.R with 0.054422 
Discrimination ratio is 6.0

Pattern is 22.V with 0.367734 
Candidate was 21.U with 0.111175 
Discrimination ratio is 3.3

Pattern is 3.C with 0.754746 
Candidate was 12.L with <^044923 
Discrimination ratio is 16.8

Pattern is 21.U with 0.179703 
Candidate was 17.Q with 0.060315 
Discrimination ratio is 3.0

Could not discriminate ... 
Candidates were 17.Q with 0.061081 

and 7.G with 0.036380

Figure 4.18: Classification results, with PREPl (left) and PREP2 (right), on 10 
handcrafted English letters.
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Font PREPl PREP2

N.C.S.

ABCDEFGHIJ

KLMNOPQ
RSTÜVWX7H]

VBCDEFDHIP
KLVNOPQ
RSTUWXYZ

RBCDEFUHIC
KLKNOPQ
RSTUVYXY2

Bookman
ABCDEFGH
I JKLMNOP

QRSTUVWXYg]

VBCDBFGH
IJKLVNOP
QRSTUWXF2

PBCDEFGH
IJKLUNOP
DRSTUVYXF2

Boston
A B C D E F G H I  

J K L M N O P Q R S T  

U V W X YEI

BBCDEFQBI
PELMHOPQRBT
BBVXF2

RBCCEFGHI
PKLNNOPQRST
DLRKP2

Courier

A B C D E F G H I J  

K L M N O P Q R S T  

Ü V K X y [ z]

RBCDBLGBXC
KLVHOPPRBT
BWXE2

PBCDKFGRLC
KLRHOPPRST
CPRXXK

Helvetica
A B C D E F G H I

J K L M N O P Q R

STUVWXMII

VBCGELOHI
LKJMNOPOB
STDWXF2

PBGDEPGRI
PKLHNOPQR
STUIflXflL

Monaco
ABCDEFGH
I J K L HN O P

QRSTUVWXY[ Z]

RBCDBFDB
IJKTNHOP
QRSTBRKXJ2

RDCCEPGH
YCKJINDP
QRSTUPFKL2

Times

ABCDEFGHIJ

KLMNOPQRST

u vw x ’iz]

RBCOEIOHII
KLMNOPQRST
UWXY2

RBCDRPURIJ
KLUNOPQRST
UWXY2

Figure 4.19: Classification results for English text of seven different fonts: New 
Century Schoolbook, Bookman, Boston, Courier, Helvetica, Monaco, and Times.
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Font PREPl PREP2

N.C.S.
ABCDEFGHIJ

KLMNOPQ

RSTUVWXyd]

VBDDEFUHIJ
KLVNOPQ
RSTUWXY2

VBJDKFGHIJ
KLMNOPQ
RSTJWXY2

Bookman
ABCDEFGH  
1 JKLMNOP  

9 R S T U V W X Y g

VBDDEPGH
IJKLMNOP
URSTUWXV2

VBCDEFGH
IJKLMNOP
BRSTUVJXY2

Boston

A B C D E F G H l  

J K L M N  O P Q R S T  
U V W X Yd]

KBCDEFGHI
JKLRNOPQRST
UWXY2

RBCDEFGHI
JKLMNOPQRST
UVMXY2

Courier

A B C D E F G H I J  

K L M N O P Q R S T  

D V W X Y 0

RBCDEFGHIJ
KLMNOPQRST
UWXE2

RBCDELGKIJ
KLVNOPQRST
UWXY2

Helvetica
A B C D E F G H l

JKLMNOPQR

STUVWX'ig]

RBCOEFGHI
JKLMNOPOU
STUWXF2

flSCUELGHT
JMLMNOPOR
STUWXY2

Monaco

A B C D E F G H

I J K L M N O P

Q R S T U V W X Y [ Z ]

RBCDEFGH
IJKLMNOP
QRSTUWXY2

RBCDEFGH
IJKLMNOP
QRSTUWXY2

Times

ABCDEFGHIJ

KLMNOPQRST
UVWX1(Z]

RBCDEFOHIJ
KLVN0PQR5T
UWXY2

RBCDEPGHII
KLMNOPQRST
UWXY2

Figure 4.20: Classification results for English text of seven different fonts using 
a network trained on letters of both Roman and Monaco fonts.
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Roman font Roman and Monaco fonts

Font Success ratio 
for PREPl

Success ratio 
for PREP2

Success ratio 
for PREPl

Success ratio 
for PREP2

N.C.S. 85% 85% 85% 85%
Bookman 85% 81% 81% 88%

Boston 62% 65% 92% 96%
Courier 54% 50% 96% 88%

Helvetica 62% 62% 85% 77%
Monaco 54% 50% 100% 100%
Times 85% 81% 92% 92%
Overall 70% 68% 90% 89%

Table 4.2: Performance results for English text of seven different fonts.

4.2 Character Recognition on the Japanese Ka­
takana Alphabet

This problem is the classification of symbols in the Japanese Katakana alphabet. 
The alphabet is shown in Figure 4.21. Since the 111 Katakana symbols are in 
fact combined forms of 66 unique patterns, the system is trained only on these 
patterns. Figure 4.22 shows the example patterns and the corresponding class 
numbers. The network for the Japanese Katakana alphabet is similar to the 
network for the English alphabet except for the number of output neurons. From 
experimentation, a network with only one hidden layer having twenty nodes is 
chosen.

Figures 4.23 through 4.27 give the performance on single grid images, where 
the preprocessor is PREPl. Images are 32 x 32 pixels. First column is the original 
image given to the system. The second column is the preprocessed version of the 
original image, and finally the third column is the resulting decision.

Figure 4.28 gives the performance on a camera scanned raster image, using
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T X/ xr X X 7 7 7 t b
a ka ga sa za ta da na ha ba pa ma ra wa fa n

4 A- ¥ f- — b b b V 7^
i ki gi shi ji chi ji ni hi bi pi mi ri fi

>> X X y ' / y 7 7' 7 A ;p
u ku gu su zu tsu zu nu fu bu pu mu ru
jr. dr df T X y b 7 ol
e ke ge se ze te de ne he be pe me re fe

n y ' / h K y dN ■i: n 7;f 7
0 ko go so ZQ to do no ho bo po mo ro fo 0
A" Aa' A"V v-Y V Y fA’ —Y bY b'Y bY $Y );y
ya kya gya sha ja cha ja nya hya bya pya mya rya
a. Â ix f-a. fb . ncr. bjL b ^ b ^
yu kyu gyu shu ju chu ju nyu hyu byu pyu myu vTyU

3 A-3 A-3 f-3 X'3 b3 ba ba N. V3
yo kyo gyo sho jo cho jo nyo hyo byo pyo myo ryo

Figure 4.21: The 111 symbols of the Japanese Katakana Alphabet.

a ka ga
u

sa
Hf
za ta da

4
na

¥
ha

/t

ha ma
4
ra

1 ki
A"'74
gi shi ji

4
chi

f · '/it
ji ni

4
hi

4
bi

4
mi

‘1,
ri

u ku gu SU ZU

"y
tsu zu nu r«fu r«

A53
mu ru

X.
k

e
^9
ke ge

dr
(9

se
-b
ze

X j
te

4
de

59
ne hê be

4
me

Vb
re

s
0

n
I ^ko

ds
go

'4
so

'4
zo to

K*55
do

4
no ho

50
bo

5S
mo

n
ro

wa
Vi

0

%
ya

yu
Bii
yo

Figure 4.22: The 66 unique patterns and their corresponding class numbers.
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T Pattern is 1 with 0.820121 
Candidate was 14 with 0.075892 
Discrimination ratio is 10.8

Pattern is 1 with 0.554672 
Candidate was 34 with 0.054674 
Discrimination ratio is 10.1

Pattern is 1 with 0.580281 
Candidate was 5 with 0.071503 
Discrimination ratio is 8.1

T

V

Pattern is 2 with 0.565567 
Candidate was 33 with 0.072772 
Discrimination ratio is 7.8

Pattern is 2 with 0.469407 
Candidate was 40 with 0.017480 
Discrimination ratio is 26.9

Pattern is 2 with 0.902589
Candidate was 13 with 0.048572
Discrimination ratio is 18.6

4 >

Pattern is 3 with 0.900058 
Candidate was 6 with 0.056437 
Discrimination ratio is 15.9

Pattern is 3 with 0.771208 
Candidate was 6 with 0.072263 
Discrimination ratio is 10.7

Pattern is 3 with 0.753924 
Candidate was 6 with 0.087926 
Discrimination ratio is 8.6

Figure 4.23; Classification results with PREPl for symbols from Class 1, 2, and 3 
rotated by 0, 60, and -60 degrees.

T - 4
Pattern is 1 with 0.820121 
Candidate was 14 with 0.075892 
Discrimination ratio is 10.8

Pattern is 1 with 0.486271 
Candidate was 34 with 0.042003 
Discrimination ratio is 11.6

Pattern is 1 with 0.525178 
Candidate was 34 with 0.077539 
Discrimination ratio is 6.8

Pattern is 2 with 0.902589 
Candidate was 13 with 0.048572 
Discrimination ratio is 18.6

Pattern is 2 with 0.446612 
Candidate was 40 with 0.203349 
Discrimination ratio is 2.2

Pattern is 2 with 0.812504 
Candidate was 33 with 0.035828 
Discrimination ratio is 22.7

Pattern is 3 with 0.900058 
Candidate was 6 with 0.056437 
Discrimination ratio is 15.9

Pattern is 3 with 0.790072 
Candidate was 66 with 0.085245 
Discrimination ratio is 9.4

Pattern is 3 with 0.642452 
Candidate was 51 with 0.253839 
Discrimination ratio is 2.5

Figure 4.24; Classification results with PREPl for symbols from Class 1, 2, and 3 
scaled by a factor of 1, 0.8, and 0.6.



CH APTER 4. EXPERIMENTAL RESULTS 44

T Pattern is 1 with 0.820121 
Candidate was 14 with 0.075892 
Discrimination ratio is 10.8

Pattern is 1 with 0.8012BS 
Candidate was 14 with 0.06G1S3 
Discrimination ratio is 12.1

Pattern is 1 with 0.813754 
Candidate was 14 with 0.074115 
Discrimination ratio is 11.0

Pattern is 2 with 0.902589 
Candidate was 13 with 0.048572 
Discrimination ratio is 18.6

Pattern is 2 with 0.455013 
Candidate was 35 with 0.069810 
Discrimination ratio is 6.5

Pattern is 40 with 0.249899 
Candidate was 9 with 0.099151 
Discrimination ratio is 2.5

o

o

Pattern is 3 with 0.900058 
Candidate was 6 with 0.055437 
Discrimination ratio is 15.9

Pattern is 3 with 0.696134 
Candidate was 51 with 0.196200 
Discrimination ratio is 3.5

Pattern is 3 with 0.854651 
Candidate was 66 with 0.055580 
Discrimination ratio is 15.4

Figure 4.25: Classification results with PREPl for symbols from Class 1, 2, and 3 
translated diagonally by 0, 6, and -6 pixels.

T
t
f

Pattern is 1 with 0.820121 
Candidate was 14 with 0.075892 
Discrimination ratio is 10.8

Pattern is 1 with 0.786378 
Candidate was 14 with 0.054121 
Discrimination ratio’ is 14.5

Pattern is 1 with 0.679368 
Candidate was 21 with 0.038395 
Discrimination ratio is 17.7

Pattern is 2 with 0.902589 
Candidate was 13 with 0.048572 
Discrimination ratio is 18.6

Pattern is 2 with 0.714926 
Candidate was 40 with 0.069100 
Discrimination ratio is 10.3

Pattern is 2 with 0.265836 
Candidate was 6 with 0.090215 
Discrimination ratio is 3.3

o

Pattern is 3 with 0.900058 
Candidate was 6 with 0.056437 
Discrimination ratio is 15.9

Pattern is 3 with 0.767802 
Candidate was 53 with 0.215734 
Discrimination ratio is 3.6

Could not discriminate ... 
Candidates were 3 with 0.334035 

and 22 with 0.293054

Figure 4.26: Classification results with PREPl for symbols from Class 1, 2, and 3 
with 0%, 20%, and 40% noise.
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T
T“r
V

Pattern is 1 with 0.020121 
Candidate was 14 with 0.075892 
Discrimination ratio is 10.8

Pattern is 1 with 0.640245 
Candidate was 34 with 0.052577 
Discrimination ratio is 12.2

Pattern is 1 with 0.463797 
Candidate was 13 with 0.140803 
Discrimination ratio is 3.3

J K .

K

Pattern is 2 with 0.902589 
Candidate was 13 with 0.048572 
Discrimination ratio is 18.6

Pattern is 2 with 0.572148 
Candidate was 13 with 0.103430 
Discrimination ratio is 5.5

Pattern is 2 with 0.758059 
Candidate was 40 with 0.109365 
Discrimination ratio is 6.9

Pattern is 3 with 0.900058 
Candidate was 6 with 0.056437 
Discrimination ratio is 15.9

Pattern is 3 with 0.386634 
Candidate was 6 with 0.082848 
Discrimination ratio is 4.7

Pattern is 3 with 0.537339 
Candidate was 66 with 0.110447 
Discrimination ratio is 4.9

Figure 4.27: Classification results with PREPl for symbols from Class 1, 2, and 3 
with random translation, scaling, and rotation applied.

PREPl. The image is 512 x 512 pixels. Classification is done by positioning the 
32 X 32 grid on each pattern. If only correctly classified patterns are considered 
the success ratio is 40%. However, for most wrong classifications the system 
has decided on a pattern geometricly similar to the correct pattern. Note that, 
in the Japanese Katakana alphabet, there are groups of symbols that are bread 
versions of an original pattern. Only small differences differentiate such patterns. 
Hence, the success ratio rises up to 82%, if classifying geometricly similar patterns 
is accepted. This high percentage points out that if more detailed training is 
applied for the Japanese Katakana symbols the success ratio may rise up to 
values of 60% - 70%.

4.3 Classification of Geometric Symbols

The problem is the classification of five main geometric symbols; circular, cross, 
line, square-like, and triangular patterns. The original patterns from each class
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Figure 4.28: Image4, a 512 x 512 pixel image of Japanese text (left) and the 
classification result with PREPl (right).

is given in Figure 4.29.

Figures Figure 4.30 through Figure 4.34 gives the performance on single grid 
images of the geometric symbols, using PREPl. Images are 32 x 32 pixels. First 
column is the original image given to the system. The second column is the 
preprocessed version of the original image, and finally the third column is the 
resulting decision. The class name followed by its corresponding output neuron’s 
value are given.

0  X -  123

□ A 45

Figure 4.29: The patterns and class numbers for the five main geometric symbols; 
circular, cross, line, square-like, and triangular.
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Pattern is 2 with 0.797234 
Candidate was 4 with 0.055726 
Discrimination ratio is 14.1

Pattern is 2 with 0.735548 
Candidate was 3 with 0.113798 
Discrimination ratio is 7.0

Pattern is 2 with 0.795905 
Candidate was'4 with 0.062356 
Discrimination ratio is 12.8

Pattern is 3 with 0.888963 
Candidate was 5 with 0.068073 
Discrimination ratio is 13.1

Pattern is 3 with 0.885215 
Candidate was 5 with 0.069678 
Discrimination ratio is 12.7

Pattern is 3 with 0.880394 
Candidate was 5 with 0.073615 
Discrimination ratio is 12.0

Pattern is 1 with 0.677130 
Candidate was 5 with 0.098540 
Discrimination ratio is 6.9

Pattern is 1 with 0.501759 
Candidate was 4 with 0.065529 
Discrimination ratio is 9.2

Pattern is 1 with 0.655887 
Candidate was 5 with 0.094537 
Discrimination ratio is 7.0

Pattern is 4 with 0.693944 
Candidate was 5 with 0.138596 
Discrimination ratio is 5.0

Pattern is 4 with 0.709548 
Candidate was 5 with 0.174160 
Discrimination ratio is 4.1

Pattern is 4 with 0.718940 
Candidate was 5 with 0.153219 
Discrimination ratio is 4.7

A >
>
<3

Pattern is 5 with 0.886124 
Candidate was 5 with 0.000000 
Discrimination ratio is Inf

Pattern is 5 with 0.882761 
Candidate was 4 with 0.073631 
Discrimination ratio is 12.0

Pattern is 5 with 0.877362 
Candidate was 2 with 0.038979 
Discrimination ratio is 22.5

Figure 4.30: Classification results with PREPl for geometric symbols rotated by
0, 60, and -60 degrees.
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0 o
0 o
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Pattern is 1 with 0.S77130 
Candidate was 5 with 0.090540 
Discrimination ratio is G.9

Pattern is 1 with 0.G3S650 
Candidate was 5 with 0.052700 
Discrimination ratio is 12.1

P a t t e r n  is 1 w i t h  0 . 6 2 1 9 3 3  
Candidate was 5 with 0.050060 
Discrimination ratio is 12.2

X X
X X
X X

Pattern is 2 with 0.797234 
Candidate was 4 with 0.05S726 
Discrimination ratio is 14.1

Pattern is 2 with 0.795793 
Candidate was 3 with 0.072649 
Discrimination ratio is 11.0

Pattern is 2 with 0.754545 
Candidate was 3 with 0.083164 
Discrimination ratio is 9.6

—

Pattern is 3 with 0.880963 
Candidate was 5 with 0.060073 
Discrimination ratio is 13.1

Pattern is 3 with 0.880750 
Candidate was 5 with 0.067956 
Discrimination ratio is 13.1

Pattern is 3 with 0.883677 
Candidate was 5 with 0.073659 
Discrimination ratio is 12.0

□ □
□ □
Q a

Pattern is 4 with 0.693944 
Candidate was 5 with 0.138596 
Discrimination ratio is 5.0

Pattern is 4 with 0.724285 
Candidate was 5 with 0.157215 
Discrimination ratio is 4.6

Pattern is 4 with 0.706544 
Candidate was 5 with 0.195862 
Discrimination ratio is 3.6

A >
A >
A <1

Pattern is 5 with 0.006124 
Candidate was 5 with 0.000000 
Discrimination ratio is Inf

Pattern is 5 with 0.853305 
Candidate was 2 with 0.037264 
Discrimination ratio is 22.9

Pattern is 5 with 0.879075 
Candidate was 2 with 0.040646 
Discrimination ratio is 21.6

Figure 4.31: Classification results with PREPl for geometric symbols scaled by
a factor of 1, 0.8, and 0.6.
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0 o
Pattern is 1 with 0.677130 
Candidate was 5 with 0.098540 
Discrimination ratio is 5.9 X X

0 o
Pattern is 1 with 0.573725 
Candidate was 4 with 0.074930 
Discrimination ratic is 7.7 X X

0 o
Pattern is 1 with 0.490310 
Candidate was 4 with 0.127724 
Discrimination ratio is 3.8 X X
Pattern is 3 with 0.888963 
Candidate was 5 with 0.068073 
Discrimination ratio is 13.1 □ □
Pattern is 3 with 0.888963 
Candidate was 5 with 0.068073 
Discrimination ratio is 13.1 □ □
Pattern is 3 with 0.888963 
Candidate was 5 with 0.068073 
Discrimination ratio is 13.1 □

Pattern is 2 with 0.797234 
Candidate was 4 with 0.05672& 
Discrimination ratio is 14.1

Pattern is 2 with 0.797234 
Candidate was 4 with 0.056726 
Discrimination ratio is 14.1

Pattern is 2 with 0.797386 
Candidate was 3 with 0.057445 
Discrimination ratio is 13.9

Pattern is 4 with 0.693944 
Candidate was 5 with 0.138596 
Discrimination ratio is 5.0

Pattern is 4 with 0.693944 
Candidate was 5 with 0.138596 
Discrimination ratio is 5.0

Pattern is 4 with 0.593944 
Candidate was 5 with 0.138596 
Discrimination ratio is 5.0

Pattern is 5 with 0.886124 
Candidate was 5 with 0.000000 
Discrimination ratio is Inf

Pattern is 5 with 0.859155 
Candidate was 4 with 0.067139 
Discrimination ratio is 12.8

Pattern is 5 with 0.885915 
Candidate was 4 with 0.000000 
Discrimination ratio is Inf

Figure 4.32: Classification results with PREPl for geometric symbols translated
diagonally by 0, 6, and -6 pixels.
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0 o

0 o

Pattern is 1 with 0.577130 
Candidate was 5 with 0.098540 
Discrimination ratio is 5.9

Pattern is 1 with 0.718015 
Candidate was 5 with 0.201359 
Discrimination ratio is 3.5

Pattern is 1 with 0.559420 
Candidate was 5 with 0.102605 

Discrimination ratio is 5.4

X X
X X
X

Pattern is 2 with 0.797234 
Candidate was 4 with 0.055725 
Discrimination ratio is 14.1

Pattern is 2 with 0.795905 
Candidate was 3 with 0.073029 
Discrimination ratio is 10.9

Pattern is 2 with 0.792735 
Candidate was 3 with 0.158081 
Discrimination ratio is 4.7

—

Pattern is 3 with 0.888963 
Candidate was 5 with 0.068073 
Discrimination ratio is 13.1

Pattern is 3 with 0.083024 
Candidate was 5 with 0.074029 
Discrimination ratio is 11.9

Pattern is 3 with 0.878547 
Candidate was 5 with 0.075138 
Discrimination ratio is 11.7

□ □
□ a
Q

Pattern is 4 with 0.593944 
Candidate was 5 with 0.138596 
Discrimination ratio is 5.0

Pattern is 4 with 0.713021 
Candidate was 5 with 0.160948 
Discrimination ratio is 4.4

Could not discriminate ... 
Candidates were 4 with 0.434515 

and 5 with 0.313256

A >
A
A

Pattern is 5 with 0.886124 
Candidate was 5 with 0.000000 
Discrimination ratio is Inf

Pattern is 5 with 0.882583 
Candidate was 5 with 0.000000 
Discrimination ratio is Inf

Pattern is 5 with 0.838724 
Candidate was 4 with 0.062111 
Discrimination ratio is 13.5

Figure 4.33: Classification results with PREPl for geometric symbols with 0%,
20%, and 40% noise.
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Pattern is 1 with 0.677130 
Candidate was 5 with 0.098540 
Discrimination ratio is 6.9

Pattern is 1 with 0.627392 
Candidate was 5 with 0.059374 
Discrimination ratio is 10.6

Pattern is 1 with 0.695513 
Candidate was 5 with 0.204555 
Discrimination ratio is 3.4

X X
·+■
X

Pattern is 2 with 0.797234 
Candidate was 4 with 0.055726 
Discrimination ratio is 14.1

Pattern is 2 with 0.794498 
Candidate was 3 with 0.050785 
Discrimination ratio is 13.1

Pattern is 2 with 0.780405 
Candidate was 3 with 0.220720 
Discrimination ratio is 3.5

i

Pattern is 3 with 0.888963 
Candidate was 5 with 0.068073 
Discrimination ratio is 13.1

Pattern is 3 with 0.885966 
Candidate was 5 with 0.071098 
Discrimination ratio is 12.3

Pattern is 3 with 0.883736 
Candidate was 5 with 0.075221 
Discrimination ratio is 11.7

□ □
a
a

Pattern is 4 with 0.593944 
Candidate was 5 with 0.138596 
Discrimination ratio is 5.0

Pattern is 4 with 0.606711 
Candidate was 5 with 0.133236 
Discrimination ratio is 4.5

Pattern is 4 with 0.719280 
Candidate was 5 with 0.159010 
Discrimination ratio is 4.5

A >
4 i>
<1

Pattern is 5 with 0.886124 
Candidate was 5 with 0.000000 
Discrimination ratio is Inf

Pattern is 5 with 0.859256 
Candidate was 4 with 0.060094 
Discrimination ratio is 14.3

Pattern is 5 with 0.870000 
Candidate was 4 with 0.069743 
Discrimination ratio is 12.5

Figure 4.34: Classification results with PREPl for geometric symbols with ran­
dom translation, scaling, and rotation applied.
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Pattern is 1 with 0.879950 
Candidate was 5 with 0.053595 
Discrimination ratio is 16.4

Pattern is 1 with 0.877091 
Candidate was 4 with 0.055626 
Discrimination ratio is 15.8

Pattern is 1 with 0.063999 
Candidate was 4 with 0.061732 
Discrimination ratio is 14.0

Pattern is 3 with 0.871019 
Candidate was 5 with 0.031803 
Discrimination ratio is 27.4

Pattern is 3 with 0.800754 
Candidate was 5 with 0.034429 
Discrimination ratio is 23.3

Pattern is 3 with 0.755228 
Candidate was 5 with 0.334764 
Discrimination ratio is 2.3

X X
-7̂ X
-V X

□ □
□

o □

Pattern is 2 with 0.875442 
Candidate was 5 with 0.136934 
Discrimination ratio is 6.4

Pattern is 2 with 0.833144 
Candidate was 4 with 0.124221 
Discrimination ratio is 6.7

Pattern is 2 with 0.062304 
Candidate was 3 with 0.158863 
Discrimination ratio is 5.4

Pattern is 4 with 0.643865 
Candidate was 3 with 0.025258 
Discrimination ratio is 25.5

Pattern is 4 with 0.621680 
Candidate was 3 with 0.020381 
Discrimination ratio is 21.9

Pattern is 4 with 0.647699 
Candidate was 3 with 0.024492 
Discrimination ratio is 26.4

A <
<
<3

Pattern is 5 with 0.589879 
Candidate was 3 with 0.041384 
Discrimination ratio is 14.3

Pattern is 5 with 0.580918 
Candidate was 3 with 0.046970 
Discrimination ratio is 12.4

Pattern is 5 with 0.549799 
Candidate was 3 with 0.053970 
Discrimination ratio is 10.2

Figure 4.35: Cleissification results with PREP2 for rotated geometric symbols.

Figure 4.35 through Figure 4.39 give the performance on single grid 32 x 32 
pixel images, using PREP2.

In order to test concurrent classification power of the system, patterns formed 
by merging two of the geometric symbols are used. Concurrent classification is the 
ability to recognize all of the patterns if multiple patterns exist in a single image. 
Figure 4.40 gives the classification results for the two versions of the preprocessor 
on the mentioned patterns of merged symbols. For the preprocessor with radial 
scaling, PREPl, in three out of ten patterns, the system catches both of the 
symbols. In six of the remaining seven patterns, the system successfully classifies 
one of the symbols. In the remaining pattern not the decision but the second 
candidate is one of the symbols. For the preprocessor with axial scaling, PREP2,
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0 o
0 o
0 o

1
*
1

Pattern is 1 with 0.879950 
Candidate was 5 with 0.053595 
Discrimination ratio is IS.4

Pattern is 1 with O.0S07B9 
Candidate was 4 with 0.057518 
Discrimination ratio is 15.1

Pattern is 1 with 0.874141 
Candidate was 4 with 0.055790 
Discrimination ratio is 15.7

Pattern is 3 with 0.871819 
Candidate was 5 with 0.031803 
Discrimination ratio is 27.4

Pattern is 3 with 0.864028 
Candidate was 5 with 0.032074 
Discrimination ratio is 2S.3

Pattern is 3 with 0.8680S5 
Candidate was 5 with 0.032336 
Discrimination ratio is 26.8

X X
X X
X X
□ □
□ □
□ □

Pattern is 2 with 0.876442 
Candidate was 5 with 0.136934 
Discrimination ratio is 6.4

Pattern is 2 with 0.075945 
Candidate was 5 with 0.133413 
Discrimination ratio is 6.6

Pattern is 2 with 0.866440 
Candidate was 3 with 0.197172 
Discrimination ratio is 4.4

Pattern is 4 with 0.643865 
Candidate was 3 with 0.025250 
Discrimination ratio is 25.5

Pattern is 4 with 0.622195 
Candidate was 3 with 0.020365 
Discrimination ratio is 21.9

Pattern is 4 with 0.450601 
Candidate was 3 with 0.036852 
Discrimination ratio is 12.2

A <
A <
A<1

Pattern is 5 with 0.589679 
Candidate was 3 with 8.841364 
Discrinination ratio is 14.3

Pattern is 5 with 8.551313 
Candidate was 3 with 8.848864 
Discrinination ratio is 11.3

Pattern is 5 with 8.569154 
Candidate was 3 with 0.041787 
Discrinination ratio is 13.6

Figure 4.36: Classification results with PREP2 for scaled geometric symbols.
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0 o
0 o
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Pattern is 1 with 0.879950 
Candidate was 5 with 0.053595 
Discrimination ratio is 1G.4

Pattern is 1 with 0.830417 
Candidate was 4 with 0.06G033 
Discrimination ratio is 14.0

Pattern is 1 with 0.834144 
Candidate was 4 with 0.008377 
Discrimination ratio is 9.4

X X
X X

X X

Pattern is 2 with 0.876442 
Candidate was 5 with 0.136934 
Discrimination ratio is 6.4

Pattern is 2 with 0.876442 
Candidate was 5 with 0.136934 
Discrimination ratio is 6.4

Pattern is 2 with 0.876442 
Candidate was 5 with 0.136934 
Discrimination ratio is 6.4

Pattern is 3 with 0.071819 
Candidate was 5 with 0.031803 
Discrimination ratio is 27.4 □ □
Pattern is 3 with 0.871819 
Candidate was 5 with 0.031803 
Discrimination ratio is 27.4 □ D
Pattern is 3 with 0.871819 
Candidate was 5 with 0.031803 
Discrimination ratio is 27.4 □ □

Pattern is 4 with 0.643865 
Candidate was 3 with 0.025258 
Discrimination ratio is 25.5

Pattern is 4 with 0.269582 
Candidate was 5 with 0.035916 
Discrimination ratio is 7.5

Pattern is 4 with 0.640834 
Candidate was 2 with 0.122693 
Discrimination ratio is 5.2

A <
A <
A <

Pattern is 5 with 0.589079 
Candidate was 3 with 0.041384 
Discrimination ratio is 14.3

Pattern is 5 with 0.494082 
Candidate was 3 with 0.054646 
Discrimination ratio is 9.0

Pattern is 5 with 0.589624 
Candidate was 3 with 0.041387 
Discrimination ratio is 14.2

Figure 4.37: Classification results with PREP2 for translated geometric symbols.
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0 o
0 o
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Pattern is 1 with 0.879950 
Candidate uas 5 uith 0.053595 
Discrimination ratio is 16.4

Pattern is 1 uith 0.062585 
Candidate was 4 with 0.056572 
Discrimination ratio is 15.2

Pattern is 1 with 0.838112 
Candidate was 5 with 0.053715 
Discrimination ratio is 15.6

X X
X X

X X

Pattern is 2 with 0.876442 
Candidate was 5 with 0.136934 
Discrimination ratio is 6.4

Pattern is 2 with 0.850293 
Candidate was 5 with 0.153780 
Discrimination ratio is 5.5

Could not discriminate ... 
Candidates were 2 with 0.855229 

and 3 with 0.459749

* 1

1

Pattern is 3 with 0.871819 
Candidate was 5 with 0.031803 
Discrimination ratio is 27.4

Pattern is 3 with 0.802999 
Candidate was 5 with 0.034205 
Discrimination ratio is 23.4

Pattern is 3 with 0.822610 
Candidate was 5 with 0.055444 
Discrimination ratio is 14.8

□ □

0 □
nt j o

Pattern is 4 with 0.643865 
Candidate was 3 with 0.025258 
Discrimination ratio is 25.5

Pattern is 4 with 0.621095 
Candidate was 3 with 0.025544 
Discrimination ratio is 24.3

Pattern is 4 with 0.586205 
Candidate was 3 with 0.023361 
Discrimination ratio is 25.1

A <
A <1
<

Pattern is 5 with 0.589079 
Candidate was 3 with 0.041304 
Discrimination ratio is 14.3

Pattern is 5 with 0.527329 
Candidate was 3 with 0.050612 
Discrimination ratio is 10.4

Pattern is 5 with 0.525596 
Candidate was 3 with 0.072024 
Discrimination ratio is 7.3

Figure 4.38: Classification results with PREP2 for noisy geometric symbols.
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0 o
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Pattern is 1 with 0.879950 
Candidate was 5 with 0.053595 
Discrimination ratio is 16.4

Pattern is 1 with 0.875433 
Candidate was 4 with 0.056011 
Discrimination ratio is 15.6

Pattern is 1 with 0.790569 
Candidate was 4 with 0.138684 
Discrimination ratio is 5.7

X X
X
X

Pattern is 2 with 0.876442 
Candidate was 5 with 0.136934 
Discrimination ratio is 6.4

Pattern is 2 with 0.844548 
Candidate was 4 with 0.120302 
Discrimination ratio is 7.0

Pattern is 2 with 0.886646 
Candidate was 3 with 0.377719 
Discrimination ratio is 2.3

If
♦l

-

Pattern is 3 with 0.871819 
Candidate was 5 with 0.031803 
Discrimination ratio is 27.4

Pattern Ls 3 with 0.851932 
Candidate was 5 with 0.032825 
Discrimination ratio is 26.0

Pattern is 3 with 0.865563 
Candidate was 5 with 0.029263 
Discrimination ratio is 29.6

□ □
D a
o Q

Pattern is 4 with 0.643865 
Candidate was 3 with 0.025258 
Discrimination ratio is 25.5

Pattern is 4 with 0.644489 
Candidate was 2 with 0.115555 
Discrimination ratio is 5.6

Pattern is 4 with 0.508465 
Candidate was 3 with 0.027020 
Discrimination ratio is 22.5

A <
4 <1
<

Pattern is 5 with 0.589879 
Candidate was 3 with 0.041384 
Discrimination ratio is 14.3

Pattern is 5 with 0.522750 
Candidate was 3 with 0.061037 
Discrimination ratio Is 0.6

Pattern is 5 with 0.568493 
Candidate was 3 with 0.054351 
Discrimination ratio is 10.5

Figure 4.39: CleLSsification results with PREP2 for geometric symbols with ran­
dom translation, scaling, and rotation applied.
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Pattern is 2 with 0.3G4779 
Candidate was 4 with 0.051823 
Discrimination ratio is 7.0

Pattern is 5 with 0.171067 
Candidate was 3 with O.OG0792 
Discrimination ratio is 19.5

Pattern is 4 with'0.610452 
Candidate was 5 with 0.108708 
Discrimination ratio is 5.7

Pattern is 5 with 0.572960 
Candidate was 3 with 0.023582 
Discrimination ratio is 24.3

Pattern is 2 with 0.788290 
Candidate was 3 with 0.003700 
Discrimination ratio is 9.4

Could not discriminate ... 
Candidates were 2 with 0.236683 

and 4 with 0.205206

Pattern is 5 with 0.706316 
Candidate was 4 with 0.012775 
Discrimination ratio is 55.3

Pattern is 4 with 0.574053 
Candidate was 5 with 0.121054 
Discrimination ratio is 4.7

Pattern is 5 with 0.786618 
Candidate was 3 with 0.003190 
Discrimination ratio is 9.5

Pattern is 5 with 0.724409 
Candidate was 3 with 0.031955 
Discrimination ratio is 22.7

e o
□

0 ©
X X
X: [3
K

□
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Si a

Pattern is 2 with 0.140233 
Candidate was 4 with 0.010651 
Discrimination ratio is 13.9

Could not discriminate ... 
Candidates were 1 with 0.084370 

and 5 with 0.046597

Pattern is 2 with 0.128843 
Candidate was 4 with 0.000609 
Discrimination ratio is 15.0

Pattern is 3 with 0.760792 
Candidate was 5 with 0.015264 
Discrimination ratio is 49.0

Pattern is 2 with 0.423906 
Candidate was 3 with 0.017106 
Discrimination ratio is 24.7

Pattern is 2 with 0.148624 
Candidate was 4 with 0.010719 
Discrimination ratio is 13.9

Pattern is 3 with 0.894973 
Candidate was 5 with 0.021806 
Discrimination ratio is 41.0

Pattern is 2 with 0.139566 
Candidate was 4 with 0.010073 
Discrimination ratio is 13.9

Pattern is 3 with 0.714642 
Candidate was 5 with 0.067537 
Discrimination ratio is 10.6

Could not discriminate ... 
Candidates were 2 with 0.090795 

and 3 with 0.050370

Figure 4.40: Claissification results, with PREPl (left) and PREP2 (right), on
patterns formed by merging two geometric symbols.
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Pattern is 1 with 0.489710 
Candidate was 5 with 0.102937 
Discrimination ratio is 2.7

Pattern is 5 with 0.834490 
Candidate was 4 with 0.054007 
Discrimination ratio is 15.5

Pattern is 3 with 0.68337S 
Candidate was 5 with 0.10G999 
Discrimination ratio is G.4

Pattern is 3 with 0.709030 
Candidate was 5 with 0.129486 
Discrimination ratio is 5.5

Pattern is 3 with 0.563266 
Candidate was 5 with 0.066862 
Discrimination ratio is 0.4

Pattern is 3 with 0.088596 
Candidate was 5 with 0.068497 
Discrimination ratio is 13.0

Pattern is 4 with 0.351126 
Candidate was 5 with 0.070720 
Discrimination ratio is 5.0

Pattern is 5 with 0.487965 
Candidate was 4 with 0.006454 
Discrimination ratio is 75.6

Pattern is 3 with 0.419376 
Candidate was 3 with 0.104784 
Discrimination ratio is 4.0

Pattern is 3 with 0.714873 
Candidate was 5 with 0.286256 
Discrimination ratio is 2.5
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Pattern is 1 with 0.829573 
Candidate was 4 with 0.106937 
Discrimination ratio is 7.8

Pattern is 1 with 0.746327 
Candidate was 5 with 0.080175 
Discrimination ratio is 9.3

Pattern is 2 with 0.807162 
Candidate was 3 with 0.208715 
Discrimination ratio is 3.9

Pattern is 2 with 0.660773 
Candidate was 3 with 0.200848 
Discrimination ratio is 3.3

Pattern is 3 with 0.717909 
Candidate was 5 with 0.290264 
Discrimination ratio is 2.5

Pattern is 3 with 0.757173 
Candidate was 5 with 0.045864 
Discrimination ratio is 16.5

Pattern is 4 with 0.451725 
Candidate was 2 with 0.078806 
Discrimination ratio is 5.7

Pattern is 4 with 0.552510 
Candidate was 3 with 0.028043 
Discrimination ratio is 19.7

Could not discriminate ... 
Candidates were 5 with 0.236333 

and 3 with 0.130053

Pattern is 5 with 0.456683 
Candidate was 3 with 0.067811 
Discrimination ratio is 6.7

Figure 4.41: Classification results, with PREPl (left) and PREP2 (right), on 
distorted patterns of the five main geometric symbols.

in three out of ten patterns, the system catches both of the symbols. In two of 
the remaining seven patterns, the system correctly classifies one of the symbols. 
In four of the remaining five patterns not the decision but the second candidate 
is one of the symbols. The remaining single pattern is completely misclassified.

Figure 4.41 gives the classification results for the two versions of the prepro­
cessor on the distorted versions of the geometric symbols. PREPl could detect 
only 50% of the distorted patterns, while PREP2 managed to successfully c I cls-  

sify 90%. The performance difference emerges from the axial scaling correction 
ability of this preprocessor.



Chapter 5

Conclusions

Artificial neural networks have recently been used for pattern classification pur­
poses. Although previous works had successful results there was a need for a 
general purpose pattern classification system which is rotation, scaling, and trans­
lation invariant. The invariancies are sought to deal with real life applications, 
and generality to be able to apply the system without any modifications on any 
classification problem.

In this work we have proposed a pattern recognition system which is rota­
tion, scaling, and translation invariant. In Chapter 3, a detailed definition of the 
system is given followed by the formulation. Two preprocessors, one with radial 
scaling correction and other with axial scaling correction is introduced. The pre­
processors are responsible of maintaining the rotational, scaling, and translational 
invariancies. Rotational invariancy is maintained by a subblock named R-Block, 
embedding a Karhunen-Loéve transformation based mapping function. In Chap­
ter 4, through experimentation on the English alphabet, the Japanese Katakana 
alphabet, and some geometric patterns the system’s power in maintaining the 
invariancies has been shown. Unless a pattern looses its original structure by 
extreme translations or scaling, the preprocessor normalizes it into one of the

59
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canonical patterns which are rotation, scaling, and translation invariant. The 
generalizing property of the system emerges from the artificial neural network 
employed in the classifier block. The network is trained on the preprocessed 
versions of the example patterns from each class using the supervised learning 
algorithm backpropagation. The final weights are used thereon to perform classi­
fications on patterns of unknown class. The activation values of the output nodes 
are then used by the interpreter. The ratio of the maximum output to the next 
highest output should exceed a predetermined threshold. If true, then the class 
represented by the neuron having the maximum output is reported. If false, then 
the interpreter reports no discrimination.

Experiments with the mentioned classification problems showed that the ar­
tificial neural network performed successfully although it was formed of simple 
and basic functioning units. The average percentage of correct classification, or 
the average success ratio, for three 512 x 512 pixel images of English text is 93% 
which is an acceptable value considering the system is a general purpose pattern 
classifier -  not a special purpose optical character recognition system - . During 
a forward pass 42000 floating point operations are performed. On Sun4 Sparc 
workstations, the average classification speed of the system is 7 patterns per sec­
ond. The system is also been tested on English text of previously unseen seven 
new fonts, which are New Century Schoolbook, Bookman, Boston, Courier, Hel­
vetica, Monaco, and Times. Two networks have been used, first is the network 
trained on letters of Roman font -  the network used up to this point -  and second 
a network trained on letters of both Roman and Monaco fonts. For the Roman 
network the average success ratio with the preprocessor with radial scaling cor­
rection, PREPl, is 70% while with the preprocessor with axial scaling correction, 
PREP2, is 68%. However for the Roman and Monaco network the average suc­
cess ratio for PREPl rises to 90%, and for PREP2 to 89%. Note that, initially 
the neural network was trained on letters of Roman font and these texts of seven 
different fonts are completely new for the network. For the Japanese Katakana 
alphabet the correct success ratio for a 512 x 512 pixel image of Japanese text
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is only 40%. Careful analysis yields that the system had decided on patterns 
that are geometricly similar to the correct pattern for most of the wrong decision 
cases. Note that, several groups of Japanese Katakana symbols are in fact bread 
versions of an original symbol, and only small differences differentiate such pat­
terns. Hence, the success ratio rises up to 82% if classifying geometricly similar 
patterns is accepted. This high percentage points out that if more detailed train­
ing is applied for the Japanese Katakana symbols the success ratio may rise up 
to values of 60% - 70%. Finally, for the geometric symbols two tests have been 
performed. First, on patterns formed by merging two geometric symbols where 
concurrent classification power of the system was tested. Concurrent classifica­
tion is the ability to recognize all of the patterns if multiple patterns exist in a 
single image. The system has managed to capture both of the symbols in the 
image by 30%, and managed to detect at least one of the symbols by 70%. Sec­
ond test has been performed for distorted versions of the geometi'ic symbols. The 
preprocessor with radial scaling correction, PREPl, could detect only 50% of the 
distorted patterns, while the preprocessor with axial scaling correction, PREP2, 
managed to successfully classify 90%. The performance difference emerges from 
the axial scaling correction ability of this preprocessor.
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m.
n T

TTlx
rriy

(A.6)

For our application, the averages nrix and niy are zero since we have provided 
translational invariancy. Furthermore, the averaging fraction in front of the ma­
trix can be eliminated since it does not change the direction of the eigenvectors 
of the correlation matrix. Therefore the correlation matrix can be written as:

(7 =
T T
T Tj-xy -Lyy

(A.7)

The eigenvalues of this matrix are computed from:
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Substituting the greatest eigenvalue, one gets the slope of the eigenvector as:

y
X
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2 -Txy

Hence, the sine and cosine for this slope can be derived from:

ysin 0 =

(A.14)
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The mapping function of R-Block is:
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In order to maintain scaling correction on the translation and rotation invariant 
image, we define the scaling factor as:
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The denominator term can be written as:
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substituting Txx, Txy, and Tyy one gets:
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similarly scaling factor Sy can be derived as:
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